The Stack and the Free Store in C++
By: Grenfel in C++ Tutorials on 2007-09-14
Local variables are on the stack, along with function parameters. Code is in code space, of course, and global variables are in global name space. The registers are used for internal housekeeping functions, such as keeping track of the top of the stack and the instruction pointer. Just about all remaining memory is given over to the free store, which is sometimes referred to as the heap.
The problem with local variables is that they don't persist: When the function returns, the local variables are thrown away. Global variables solve that problem at the cost of unrestricted access throughout the program, which leads to the creation of code that is difficult to understand and maintain. Putting data in the free store solves both of these problems.
You can think of the free store as a massive section of memory in which thousands of sequentially numbered cubbyholes lie waiting for your data. You can't label these cubbyholes, though, as you can with the stack. You must ask for the address of the cubbyhole that you reserve and then stash that address away in a pointer.
One way to think about this is with an analogy: A friend gives you the 800 number for Acme Mail Order. You go home and program your telephone with that number, and then you throw away the piece of paper with the number on it. If you push the button, a telephone rings somewhere, and Acme Mail Order answers. You don't remember the number, and you don't know where the other telephone is located, but the button gives you access to Acme Mail Order. Acme Mail Order is your data on the free store. You don't know where it is, but you know how to get to it. You access it by using its address--in this case, the telephone number. You don't have to know that number; you just have to put it into a pointer (the button). The pointer gives you access to your data without bothering you with the details.
The stack is cleaned automatically when a function returns. All the local variables go out of scope, and they are removed from the stack. The free store is not cleaned until your program ends, and it is your responsibility to free any memory that you've reserved when you are done with it.
The advantage to the free store is that the memory you reserve remains available until you explicitly free it. If you reserve memory on the free store while in a function, the memory is still available when the function returns.
The advantage of accessing memory in this way, rather than using global variables, is that only functions with access to the pointer have access to the data. This provides a tightly controlled interface to that data, and it eliminates the problem of one function changing that data in unexpected and unanticipated ways.
For this to work, you must be able to create a pointer to an area on the free store and to pass that pointer among functions. The following sections describe how to do this.
new
You allocate memory on the free store in C++ by using the new keyword. new is followed by the type of the object that you want to allocate so that the compiler knows how much memory is required. Therefore, new unsigned short int allocates two bytes in the free store, and new long allocates four.
The return value from new is a memory address. It must be assigned to a pointer. To create an unsigned short on the free store, you might write
unsigned short int * pPointer; pPointer = new unsigned short int;
You can, of course, initialize the pointer at its creation with
unsigned short int * pPointer = new unsigned short int;
In either case, pPointer now points to an unsigned short int on the free store. You can use this like any other pointer to a variable and assign a value into that area of memory by writing
*pPointer = 72;
This means, "Put 72 at the value in pPointer," or "Assign the value 72 to the area on the free store to which pPointer points."
If new cannot create memory on the free store (memory is, after all,
a limited resource) it returns the null pointer. You must check your pointer for
null each time you request new memory.
WARNING: Each time you allocate memory using the new keyword, you must check to make sure the pointer is not null.
delete
When you are finished with your area of memory, you must call delete on the pointer. delete returns the memory to the free store. Remember that the pointer itself--as opposed to the memory to which it points--is a local variable. When the function in which it is declared returns, that pointer goes out of scope and is lost. The memory allocated with new is not freed automatically, however. That memory becomes unavailable--a situation called a memory leak. It's called a memory leak because that memory can't be recovered until the program ends. It is as though the memory has leaked out of your computer.
To restore the memory to the free store, you use the keyword delete. For example,
delete pPointer;
When you delete the pointer, what you are really doing is freeing up the memory whose address is stored in the pointer. You are saying, "Return to the free store the memory that this pointer points to." The pointer is still a pointer, and it can be reassigned.
WARNING: When you call delete on a pointer, the memory it points to is freed. Calling delete on that pointer again will crash your program! When you delete a pointer, set it to zero (null). Calling delete on a null pointer is guaranteed to be safe. For example:Animal *pDog = new Animal; delete pDog; //frees the memorypDog = 0; //sets pointer to null //... delete pDog; //harmless
Add Comment
This policy contains information about your privacy. By posting, you are declaring that you understand this policy:
- Your name, rating, website address, town, country, state and comment will be publicly displayed if entered.
- Aside from the data entered into these form fields, other stored data about your comment will include:
- Your IP address (not displayed)
- The time/date of your submission (displayed)
- Your email address will not be shared. It is collected for only two reasons:
- Administrative purposes, should a need to contact you arise.
- To inform you of new comments, should you subscribe to receive notifications.
- A cookie may be set on your computer. This is used to remember your inputs. It will expire by itself.
This policy is subject to change at any time and without notice.
These terms and conditions contain rules about posting comments. By submitting a comment, you are declaring that you agree with these rules:
- Although the administrator will attempt to moderate comments, it is impossible for every comment to have been moderated at any given time.
- You acknowledge that all comments express the views and opinions of the original author and not those of the administrator.
- You agree not to post any material which is knowingly false, obscene, hateful, threatening, harassing or invasive of a person's privacy.
- The administrator has the right to edit, move or remove any comment for any reason and without notice.
Failure to comply with these rules may result in being banned from submitting further comments.
These terms and conditions are subject to change at any time and without notice.
- Data Science
- Android
- React Native
- AJAX
- ASP.net
- C
- C++
- C#
- Cocoa
- Cloud Computing
- HTML5
- Java
- Javascript
- JSF
- JSP
- J2ME
- Java Beans
- EJB
- JDBC
- Linux
- Mac OS X
- iPhone
- MySQL
- Office 365
- Perl
- PHP
- Python
- Ruby
- VB.net
- Hibernate
- Struts
- SAP
- Trends
- Tech Reviews
- WebServices
- XML
- Certification
- Interview
categories
Related Tutorials
Calculating total based on the given quantity and price in C++
Sorting an array of Strings in C++
Matrix using nested for loops in C++
Compute the square root of the sum of the squares of an array in C++
Calculate average using Two-Dimensional Array in C++
Two-Dimensional Array Manipulation in C++
Compiling and Linking Multiple Source Files in C++
Escape Sequences for Nonprintable Characters in C++
Using the Built-in Arithmetic Types in C++
Comments